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Abstract
Sequential recommendation (SR) aims to predict users’ subsequent
interactions by modeling their sequential behaviors. Recent studies
have explored frequency domain analysis, which effectively models
periodic patterns in user sequences. However, existing frequency-
domain SR models still face two major drawbacks: (i) limited fre-
quency band coverage, often missing critical behavioral patterns in
a specific frequency range, and (ii) lack of personalized frequency
filtering, as they apply an identical filter for all users regardless
of their distinct frequency characteristics. To address these chal-
lenges, we propose a novel frequency-domain model, Mixture of
User-adaptive Frequency FIlteriNg (MUFFIN), operating through
two complementary modules. (i) The global filtering module (GFM)
handles the entire frequency spectrum to capture comprehensive
behavioral patterns. (ii) The local filtering module (LFM) selectively
emphasizes important frequency bands without excluding infor-
mation from other ranges. (iii) In both modules, the user-adaptive
filter (UAF) is adopted to generate user-specific frequency filters
tailored to individual unique characteristics. Finally, by aggregating
both modules, MUFFIN captures diverse user behavioral patterns
across the full frequency spectrum. Extensive experiments show
that MUFFIN consistently outperforms state-of-the-art frequency-
domain SR models over five benchmark datasets. The source code
is available at https://github.com/ilwoong100/MUFFIN.
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1 Introduction
Sequential recommendation (SR) [3, 4, 37] aims to predict users’
next interactions by modeling their historical behavior sequences.
Unlike traditional recommendation settings that treat user-item
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Figure 1: (a) Illustration of user sequences converted to fre-
quency domain. Each user exhibits distinct frequency charac-
teristics. (b) Existing works apply an identical filter to users,
which fails to capture individual frequency characteristics.
(c) Our model performs user-adaptive frequency filtering
tailored to individual user characteristics.

interactions as independent instances, SR models [14, 23, 29, 32,
33, 41, 47] focus on capturing temporal dynamics and evolving
user preferences in user sequences. These user sequences often
exhibit intricate patterns at multiple levels of granularity, ranging
from high-level transitions in user interests to subtle contextual
variations [6, 36, 38]. Therefore, the core challenge of SR lies in
effectively modeling diverse patterns in user interactions over time.

Recent advances in deep learning have significantly enhanced
the SR performance, particularly by adopting transformer-based
models using self-attention mechanisms. These models [14, 32]
excel at modeling long-range dependencies within user sequences,
effectively identifying item-to-item relationships. Despite their
strengths, recent studies [22, 29] have highlighted a key limitation:
self-attention mechanisms often struggle to capture fine-grained
behavioral patterns, thereby impeding their ability to fully model
the diverse and dynamic nature of user behavior.

To address this limitation, an emerging line of research [1, 2, 29,
40, 48] has explored frequency-domain representation. It is motivated
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by the observation that user sequences often exhibit inherent peri-
odicities and multi-scale variations. Using the discrete Fourier trans-
form (DFT), a time-domain representation is transformed into the
frequency-domain representation. Therefore, complex behavioral
patterns are decomposed into interpretable spectral components,
where low-frequency signals correspond to gradual shifts in user
interests, and high-frequency signals capture abrupt or short-term
interest changes [27].

As illustrated in Figure 1(a), three users show distinct frequency
characteristics based on their behavioral patterns. User A (blue)
shows gradual transitions (i.e., two changes) with dominant low-
frequency components, and User B (green) shows a multi-band
spectrum with both strong low- and high-frequency components,
as comedy films dominate their consumption while intermittently
exploring other genres (i.e., four changes). Meanwhile, User C (pink)
exhibits rapid genre switching with frequent item transitions (i.e.,
seven changes), resulting in a frequency spectrum dominated by
high-frequency components.

Although existing frequency-domain SR models [1, 29, 48] at-
tempt to capture diverse user interaction patterns, they still suffer
from two limitations. (i) Limited frequency band coverage: existing
models face a trade-off between full frequency spectrum analysis
and detailed frequency band-specific modeling. As observed in Fig-
ure 1(a), it is necessary to integrate global spectrum understanding
and local band-specific analysis simultaneously. However, existing
models cannot achieve this dual capability. (ii) Lack of personalized
frequency filtering: existing models apply identical frequency fil-
ters regardless of the different frequency characteristics of users.
As shown in Figure 1(b), when a low-frequency-emphasized fil-
ter is equally applied to three users, capturing each user’s unique
behavioral pattern is difficult, leading to information dilution.

To address this challenge, we propose Mixture of User-adaptive
Frequency FIlteriNg (MUFFIN), which operates through two com-
plementary modules. The global filtering module (GFM) processes
the entire frequency spectrum simultaneously to capture compre-
hensive user characteristics across all frequency bands, capturing
the users’ overall behavioral tendencies. In contrast, the local filter-
ingmodule (LFM) divides the spectrum into distinct frequency bands
and selectively emphasizes the important ones while preserving
information from the others. To enhance user adaptiveness for each
module, we also introduce a user-adaptive filter (UAF) that dynami-
cally generates personalized filters tailored to each user’s unique
characteristics. Finally, MUFFIN ensures personalized filtering that
adapts to diverse user behavior patterns, enabling both modules to
adjust their filtering strength based on individual user patterns. As
depicted in Figure 1(c), MUFFIN generates user-adaptive filters and
effectively identifies individual behavioral patterns. Through ex-
tensive experiments, MUFFIN is compared against eight SR models
and outperforms state-of-the-art frequency-domain models over
five benchmark datasets.

The key contributions of this paper are summarized as follows:
• We propose a novel dual filtering architecture consisting of
the global filtering module (GFM) and the local filtering module
(LFM). The GFM processes the entire frequency spectrum to
capture comprehensive behavioral patterns across all frequency
ranges, while the LFM selectively emphasizes specific frequency

bands to model user-specific behavioral patterns without losing
any frequency information.

• We employ the user-adaptive filter (UAF) that serves as a core
mechanism. It enables both GFM and LFM to perform user-
specific filtering by generating personalized filters based on
individual frequency-domain representations.

• Through extensive experiments on five datasets over eight SR
models, we demonstrate that MUFFIN achieves over state-of-
the-art models, showcasing its ability to adapt to user-specific
patterns and capture diverse behavior preferences.

2 Preliminaries
2.1 Problem Formulation
LetU and I denote the sets of users and items, respectively, where
|U| and |I | are the total number of users and items. For each user
𝑢 ∈ U, we are given a user sequence 𝑆𝑢 = [𝑖1, 𝑖2, ..., 𝑖 |𝑆𝑢 | ], where
𝑖 𝑗 ∈ I indicates the 𝑗-th item in the user sequence, and |𝑆𝑢 | is the
length of the user sequence. Given a user sequence 𝑆𝑢 , the goal
of SR is to predict the next item 𝑖 |𝑆𝑢 |+1 with which user 𝑢 will
most likely interact. It is formulated as training an optimal model
parameter 𝜃∗ that maximizes the conditional probability:

𝜃∗ = argmax
𝜃

𝑃𝜃 (𝑖 = 𝑖 |𝑆𝑢 |+1 | 𝑆𝑢 ) . (1)

For each prediction, the SR model parameterized by 𝜃 produces
a probability distribution over the item set I. Thus, higher proba-
bilities indicate items the user is more likely to interact with next.

2.2 Fourier Transform
The discrete Fourier transform (DFT) is a fundamental component
of digital signal processing [25, 30], converting a sequence in the
time domain into the frequency domain. Given an input sequence
S ∈ R𝑁 with length 𝑁 , the DFT is denoted as F : R𝑁 → C𝑁 , and
its inverse, i.e., the inverse discrete Fourier transform (IDFT), is
denoted as F −1 : C𝑁 → R𝑁 . The DFT can be performed as:

F = F (S) = 1
√
𝑁



1 1 · · · 1
1 𝑒

−2𝜋𝑖
𝑁 · · · 𝑒

−2𝜋𝑖 (𝑁 −1)
𝑁

.

.

.
.
.
.

. . .
.
.
.

1 𝑒
−2𝜋𝑖 (𝑁 −1)

𝑁 · · · 𝑒
−2𝜋𝑖 (𝑁 −1)2

𝑁


S, (2)

where 𝑖 is the imaginary unit, and F ∈ C𝑁 is the frequency com-
ponent of the sequence S. In practice, we utilize the Fast Fourier
Transform (FFT) [5] algorithm, which efficiently computes the DFT
with a computational complexity of 𝑂 (𝑁 log𝑁 ) compared to the
direct DFT computation of𝑂 (𝑁 2). Furthermore, since our sequence
S consists of real numbers, its Fourier transform exhibits conjugate
symmetry:

F[𝑘] = F[𝑁 − 𝑘]∗, 𝑘 = 1, 2, ..., ⌊𝑁 /2⌋, (3)

where ∗ denotes the complex conjugate. Due to this symmetry prop-
erty, we use the real-valued fast Fourier transform (RFFT) [21, 31],
which computes only the non-redundant half of the spectrum. This
reduces the output dimension from𝑁 to ⌊𝑁2 ⌋+1while preserving all
unique frequency information. Using RFFT, the frequency-domain
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representation is:

F = F𝑅 (S) ∈ C𝑀 , where𝑀 =

⌊
𝑁

2

⌋
+ 1, (4)

where F𝑅 (·) denotes RFFT. This reduces computational overhead
and maintains all essential frequency components needed for SR.
For notational convenience, we denote the RFFT F𝑅 as F .

To capture the frequency band in F, we can extract the frequency
components from indices 𝑓𝑡 to 𝑓𝑡+1, where 𝑓𝑡 denotes the start-
ing index of the 𝑡-th frequency band. It represents the particular
frequency band in the transformed sequence.

B𝑡 = F[𝑓𝑡 : 𝑓𝑡+1], (5)

where B𝑡 ∈ C𝑓𝑡+1−𝑓𝑡 and [:] indicates the slice operation. In B𝑡 ,
smaller values of 𝑡 correspond to low frequencies, while larger
values of 𝑡 correspond to high frequencies.

2.3 Learnable Frequency Filter
The filtering layer in the frequency domain is a key component
that adjusts the importance of frequency components for input
sequences. This is based on the concept of frequency filteringwidely
used in signal processing, and some studies [1, 48] attempted to
implement it using learnable filters in SR. The learnable frequency
filter layer is defined as follows:

𝑓 (S) = F −1 (F (S) ⊙ W) , (6)

where F −1 represents inverse RFFT, W ∈ C𝑀 is learnable fre-
quency filter, and ⊙ denotes element-wise multiplication.

This filterW is optimized during model training. In other words,
it captures specific patterns in the sequence by emphasizing or
suppressing certain frequency bands.

3 Proposed Model: MUFFIN
In this section, we present Mixture of User-adaptive Frequency
FIlteriNg (MUFFIN), capturing diverse user behavior patterns. As
depicted in Figure 2, it comprises two complementary filtering
modules: global filtering module (GFM) and local filtering module
(LFM), each designed to extract different aspects of user behavior.
To enable user adaptiveness in both modules, we also incorporate
a user-adaptive filter (UAF), which dynamically generates personal-
ized filters tailored to each user’s frequency-domain characteristics.
Section 3.1 details these key components ofMUFFIN, and Section 3.2
describes the training procedure of MUFFIN.

3.1 Mixture of Filtering Modules

Embedding layer. The item embedding matrix E ∈ R | I |×𝑑 , where
𝑑 is the embedding dimension, is employed to project items into a la-
tent embedding space. Given a user sequence 𝑆𝑢 = [𝑖1, 𝑖2, . . . , 𝑖 |𝑆𝑢 | ],
each item 𝑖 𝑗 is represented as its corresponding embedding vec-
tor e𝑗 ∈ R𝑑 . These item embeddings are concatenated to form
the initial sequence representations H0 = [e1, e2, . . . , e |𝑆𝑢 | ], where
H0 ∈ R𝑛×𝑑 , and 𝑛 is the maximum length of the sequence.
User-adaptive filter (UAF). It is dynamically generated to enable
personalized filtering within global and local filtering modules. The
initial sequence representation H0 is transformed from the time

domain into the frequency domain by the Fourier transform:

X0 = F (H0) ∈ C𝑚×𝑑 , (7)

where𝑚 = ⌊𝑛/2⌋ + 1, and X0 denotes the initial representation in
the frequency domain.

Inspired by recent advances in frequency-based filtering for
computer vision [19], we design a convolution filter ℎ(·) to capture
user-specific behavior patterns:

C(X0) = BatchNorm1D
(
Conv1D(∥X0∥⊤)

)
∈ R𝑑×𝑚, (8)

ℎ(X0) = 𝜎
(
C(X0)

)⊤
∈ R𝑚×𝑑 , (9)

where 𝜎 denotes sigmoid function, and ∥ · ∥ denotes the ampli-
tude (i.e., magnitude) of the complex-valued tensor. ⊤ indicates the
matrix transpose operator. The Conv1D [17] operation employs a
convolutional kernelW𝑐 ∈ R𝑑×𝑑×𝑐 , where 𝑐 is a hyperparameter
for kernel size. By leveraging amplitude information and applying
1D convolution, we compute a weighted aggregation of each fre-
quency component and its neighboring frequencies. Therefore, this
convolutional filter captures meaningful patterns in the frequency-
amplitude domain to construct personalized representations.
Global filtering module (GFM). It captures high-level behavioral
patterns by analyzing the full frequency spectrum of user sequences.
At the 𝑙-th layer, the frequency-domain representation X𝑙

𝑔𝑙𝑜𝑏𝑎𝑙
is

computed as:
X𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

= F (H𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

), (10)

where H0
𝑔𝑙𝑜𝑏𝑎𝑙

corresponds to the initial representation H0.
To modulate frequency components across the entire spectrum,

we adopt a learnable filter W𝑔𝑙𝑜𝑏𝑎𝑙 ∈ C𝑚×𝑑 . It is refined using the
user-adaptive filter (UAF) as follows:

W̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

= ℎ(X0) ⊙ W𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

, (11)

where ℎ(·) denotes the amplitude-based convolutional filter de-
scribed in Eq. (9). Notably, the UAF takes only the initial frequency
representation X0 as input, rather than the layer-specific input X𝑙
for 𝑙 > 0. This enables the filter to encode user-specific characteris-
tics from the original sequence spectrum.

The global adaptive filter W̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

is then applied to scale the
frequency-domain representation. It is transformed back to the time
domain via the inverse Fourier transform:

H̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

= F −1 (X𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

⊙ W̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

), (12)

where H̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

∈ R𝑛×𝑑 . To ensure stable training and effective
gradient propagation [9], the final output of the GFM incorporates
residual connections, dropout, and layer normalization:

O𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

= LayerNorm
(
H𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

+ Dropout(H̃𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

)
)
. (13)

Local filtering module (LFM). It is designed to capture fine-
grained patterns by partitioning the frequency spectrum and em-
phasizing specific frequency bands. At the 𝑙-th layer, the frequency-
domain representation of the user sequence X𝑙

𝑙𝑜𝑐𝑎𝑙
is obtained by

applying the Fourier transform to the input sequence H𝑙
𝑙𝑜𝑐𝑎𝑙

, and
dividing the result into 𝐾 contiguous frequency bands:

X𝑙
𝑙𝑜𝑐𝑎𝑙

= [B𝑙1;B
𝑙
2; ...;B

𝑙
𝐾 ] = F (H𝑙

𝑙𝑜𝑐𝑎𝑙
), (14)
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Figure 2: Overview of MUFFIN, which trains with two parallel modules: global filtering module (GFM) and local filtering module
(LFM). Both modules utilize the user-adaptive filter (UAF) to adjust to individual user behavior patterns in the frequency
domain. A mixture of the module outputs is used to predict the target item.

where each B𝑙𝑡 = X𝑙
𝑙𝑜𝑐𝑎𝑙

[𝑓𝑡 : 𝑓𝑡+1] ∈ C𝑎𝑡×𝑑 denotes the 𝑡-th fre-
quency band with starting index 𝑓1 = 0, and 𝐾 is a hyperparameter
to control the number of frequency bands. The band size 𝑎𝑡 deter-
mines the number of frequency components assigned to each band 1.
This band-wise decomposition enables our model to focus on local
frequency patterns, facilitating the extraction of subtle behavioral
signals that may not be captured by global representations.

Similar to GFM, LFM also utilizes a learnable filter W𝑙𝑜𝑐𝑎𝑙 ∈
C𝑚×𝑑 to control the contribution of each frequency component.
To incorporate user-specific behavior, we apply UAF to generate a
local adaptive filter at the 𝑙-th layer:

W̃𝑙
𝑙𝑜𝑐𝑎𝑙

= ℎ(X0) ⊙ W𝑙
𝑙𝑜𝑐𝑎𝑙

. (15)

This filter is then divided into 𝐾 bands to match the band-wise
structure of the frequency representation:

W̃𝑙
𝑙𝑜𝑐𝑎𝑙

= [W̃𝑙
𝑙𝑜𝑐𝑎𝑙,1; W̃

𝑙
𝑙𝑜𝑐𝑎𝑙,2; . . . ; W̃

𝑙
𝑙𝑜𝑐𝑎𝑙,𝐾

], (16)

where W̃𝑙
𝑙𝑜𝑐𝑎𝑙,𝑡

∈ C𝑎𝑡×𝑑 is applied to the 𝑡-th frequency band.
To preserve the full frequency resolution required for the in-

verse Fourier transform, we apply zero-padding after filtering each
frequency band:

B̃𝑙𝑡 = ZeroPadding(B𝑙𝑡 ⊙ W̃𝑙
𝑙𝑜𝑐𝑎𝑙,𝑡

)

= [0𝑓𝑡×𝑑 ;B
𝑙
𝑡 ⊙ W̃𝑙

𝑙𝑜𝑐𝑎𝑙,𝑡
; 0(𝑚−𝑓𝑡+1 )×𝑑 ] ∈ C

𝑚×𝑑 , (17)

where 0𝑓𝑡×𝑑 and 0(𝑚−𝑓𝑡+1 )×𝑑 are zero matrices that pad the begin-
ning and end of the spectrum, respectively.

Each zero-padded frequency representation is transformed back
to the time domain:

H̃𝑙
𝑙𝑜𝑐𝑎𝑙,𝑡

= F −1 (B̃𝑙𝑡 ) ∈ R𝑛×𝑑 . (18)

1Here, 𝑎𝑡 = ⌊ 𝑡×𝑚
𝐾

⌋ − ⌊ (𝑡−1)×𝑚
𝐾

⌋ and∑𝐾𝑡=1 𝑎𝑡 =𝑚, ensuring the complete coverage
of the frequency spectrum.

We then apply dropout, residual connection, and layer normaliza-
tion to obtain the 𝑡-th frequency band output:

o𝑡 = LayerNorm
(
H𝑙
𝑙𝑜𝑐𝑎𝑙

+ Dropout(H̃𝑙
𝑙𝑜𝑐𝑎𝑙,𝑡

)
)
. (19)

To integrate the outputs from all bands, we adopt a soft gating
mechanism [12] that dynamically weighs each band’s contribu-
tion based on the input representation in the frequency domain.
Specifically, a gating function 𝑔(·) is used to produce a softmax
distribution over all frequency bands:

𝑝𝑡 = Softmax(𝑔(∥X𝑙
𝑙𝑜𝑐𝑎𝑙

∥))𝑡 , (20)

where ∥X𝑙
𝑙𝑜𝑐𝑎𝑙

∥ ∈ R𝑚×𝑑 denotes the amplitude of the complex
spectrum, and 𝑝𝑡 ∈ R is the importance weight assigned to the
𝑡-th frequency band. For 𝑔(·), we use a three-layer MLP with GeLU
activation function.

Unlike sparse gating methods such as top-𝑘 selection [28], we
utilize a soft selection strategy to preserve the contributions of
all bands. This avoids potential information loss from discarding
seemingly less important frequencies that may still carry valuable
user-specific signals.

Finally, the output of LFM is constructed through a weighted
aggregation of frequency band outputs based on their learned sig-
nificance:

O𝑙
𝑙𝑜𝑐𝑎𝑙

=

𝐾∑︁
𝑡=1

𝑝𝑡 · o𝑡 . (21)

Feed forward network (FFN). It incorporates non-linearity into
the model, enabling it to capture intricate patterns in user se-
quences.

FFN(X) = GeLU(XW1 + b1)W2 + b2, (22)

where W1 ∈ R𝑑×4𝑑 , W2 ∈ R4𝑑×𝑑 are weight matrices, and b1 ∈
R4𝑑 , b2 ∈ R𝑑 are bias vectors.
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We then apply the FFN to the outputs of both the global and
local modules:

H𝑙+1∗ = LayerNorm
(
O𝑙∗ + Dropout

(
FFN(O𝑙∗)

))
, (23)

where ∗ ∈ {𝑔𝑙𝑜𝑏𝑎𝑙, 𝑙𝑜𝑐𝑎𝑙}.
The updated representations, H𝑙+1

𝑔𝑙𝑜𝑏𝑎𝑙
and H𝑙+1

𝑙𝑜𝑐𝑎𝑙
, are passed into

the next layer’s GFM and LFM, respectively, allowing the model
to progressively refine the sequence representations across layers.
After passing the final layer 𝐿, we obtain the final outputs H𝐿

𝑔𝑙𝑜𝑏𝑎𝑙

and H𝐿
𝑙𝑜𝑐𝑎𝑙

, respectively.
Prediction layer. This layer fuses the outputs of both global and
local branches to form the final sequence representation used for
next-item prediction. We concatenate the final global and local
representations and project them through a linear transformation:

H𝐿 = [H𝐿
𝑔𝑙𝑜𝑏𝑎𝑙

;H𝐿
𝑙𝑜𝑐𝑎𝑙

]W𝑝 , (24)

where W𝑝 ∈ R2𝑑×𝑑 and H𝐿 ∈ R𝑛×𝑑 .
To preserve information from the original sequence embeddings,

we add a residual connection with the initial embedding H0, fol-
lowed by dropout and layer normalization:

Ĥ𝐿 = Dropout
(
LayerNorm(H0 + H𝐿)

)
. (25)

Finally, we select the representation of the last interacted item
Ĥ𝐿|𝑆𝑢 | ∈ R

𝑑 and compute the predicted scores for all items.

ŷ = Softmax(EĤ𝐿|𝑆𝑢 | ) ∈ R
| I | , (26)

where E ∈ R | I |×𝑑 is the whole item embedding matrix shared with
the input embedding matrix.

3.2 Model Training
We train MUFFIN using a multi-objective loss that encourages
accurate next-item prediction while promoting the complementary
strengths of its dual-module architecture.
Recommendation loss. Themain training objective is tominimize
the cross-entropy loss between the predicted distribution ŷ and the
ground truth one-hot vector y:

L𝑟𝑒𝑐 = −
| I |∑︁
𝑖=1

y𝑖 log(ŷ𝑖 ). (27)

Auxiliary training loss. Although the dual-branch design enables
MUFFIN to capture both global and local frequency signals, relying
solely on the final fused output may not fully exploit the specializa-
tion of each module. Motivated by prior work [35], we introduce
auxiliary supervision that independently encourages each module
to perform next-item prediction.

We compute predictions from the final layer representations of
each module:

ŷ𝑙𝑜𝑐𝑎𝑙 = Softmax(EH𝐿
𝑙𝑜𝑐𝑎𝑙

), (28)

ŷ𝑔𝑙𝑜𝑏𝑎𝑙 = Softmax(EH𝐿
𝑔𝑙𝑜𝑏𝑎𝑙

). (29)

The auxiliary loss is defined as the sum of their predictions. This
loss encourages global and local modules to develop distinct yet

Table 1: Data statistics after preprocessing. ‘Avg. Length’ in-
dicates the average number of interactions per user.

Dataset Beauty Toys Sports Yelp ML-1M

# Users 22,363 19,412 35,598 30,499 6,041
# Items 12,101 11,924 18,357 20,068 3,417
# Inter. 198,502 167,597 296,337 317,182 999,611

Avg. Length 8.9 8.6 8.3 10.4 165.5
Sparsity 99.93% 99.93% 99.95% 99.95% 95.16%

predictive representations.

L𝑎𝑢𝑥 = −
| I |∑︁
𝑖=1

(
y𝑖 log(ŷ𝑙𝑜𝑐𝑎𝑙𝑖 ) + y𝑖 log(ŷ𝑔𝑙𝑜𝑏𝑎𝑙𝑖

)
)
. (30)

Load balancing loss. Inspired by a study [44], we introduce a load-
balancing regularization loss to prevent the soft gate in LFM from
focusing disproportionately on a small subset of frequency bands.
This loss encourages uniform attention across all𝐾 frequency bands
by penalizing deviation from the uniform distribution:

L𝑏𝑎𝑙 =
1
𝐾

𝐾∑︁
𝑡=1

∥𝑝𝑡 −
1
𝐾
∥22, (31)

where 𝑝𝑡 is the soft gate probability of the 𝑡-th band in Eq. (20). This
promotes diversity and full utilization of the frequency spectrum
during training.
Total loss. The overall training objective of MUFFIN combines
three loss functions:

L = L𝑟𝑒𝑐 + 𝛼L𝑎𝑢𝑥 + 𝛽L𝑏𝑎𝑙 , (32)

where 𝛼 and 𝛽 are hyperparameters that control the strength of the
auxiliary and load balancing losses, respectively.

4 Experiment Setup
Datasets. We evaluate MUFFIN on five widely used benchmark
datasets for sequential recommendation (SR), following the stan-
dard setup in prior work [1]. These datasets span diverse domains –
e-commerce, local services, and media – providing a comprehensive
validation of the model’s effectiveness. Amazon Beauty, Toys,
and Sports2 [20] are subsets of the Amazon product review corpus.
Each dataset contains timestamped user-item interactions derived
from product reviews and ratings. Yelp3 consists of user interac-
tions with local businesses, including reviews and ratings.ML-1M4

contains 1 million movie ratings from 6,000 users on 4,000 movies,
along with user demographics and movie metadata information.

Each dataset is preprocessed following established protocols to
ensure fair and consistent comparisons with prior work [1, 2, 32].
Specifically, we use five-core settings by removing users and items
that occur less than five times in the dataset. Table 1 reports the
detailed statistics of datasets.
Competing models. We compare MUFFIN against eight SR base-
lines, including time-domain and frequency-domain SR models.

2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
3https://www.yelp.com/dataset
4https://grouplens.org/datasets/movielens/

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://www.yelp.com/dataset
https://grouplens.org/datasets/movielens/


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea. Ilwoong Baek, Mincheol Yoon, Seongmin Park, and Jongwuk Lee

Table 2: Accuracy comparison for eight SR models on five datasets. The best and second-best results are marked in bold and
underlined. † is 𝑝 < 0.05 in a one-tailed t-test, and ‘Imp.’ is improvement ratio, both compared with the second-best model.

Dataset Metric GRU4Rec SASRec BERT4Rec DuoRec FMLPRec FEARec BSARec SLIME4Rec MUFFIN Imp. (%)

Beauty

R@5 0.0399 0.0563 0.0338 0.0570 0.0544 0.0580 0.0557 0.0579 0.0592† 2.19
R@10 0.0609 0.0843 0.0484 0.0863 0.0861 0.0863 0.0874 0.0885 0.0919† 3.80
R@20 0.0886 0.1186 0.0696 0.1216 0.1247 0.1227 0.1256 0.1273 0.1304† 2.44
N@5 0.0266 0.0329 0.0232 0.0352 0.0321 0.0360 0.0334 0.0361 0.0381† 5.45
N@10 0.0333 0.0418 0.0280 0.0446 0.0424 0.0451 0.0437 0.0460 0.0487† 5.80
N@20 0.0403 0.0505 0.0333 0.0535 0.0521 0.0545 0.0533 0.0558 0.0583† 4.60

Toys

R@5 0.0339 0.0625 0.0327 0.0653 0.0597 0.0670 0.0636 0.0670 0.0692† 3.28
R@10 0.0510 0.0898 0.0451 0.0946 0.0901 0.0965 0.0944 0.0995 0.1005 0.97
R@20 0.0740 0.1226 0.0620 0.1296 0.1269 0.1307 0.1310 0.1365 0.1382 1.22
N@5 0.0235 0.0352 0.0231 0.0388 0.0343 0.0395 0.0379 0.0401 0.0441† 10.06
N@10 0.0290 0.0440 0.0271 0.0483 0.0441 0.0490 0.0478 0.0506 0.0542† 7.25
N@20 0.0347 0.0522 0.0313 0.0571 0.0534 0.0576 0.0571 0.0599 0.0641† 7.02

Sports

R@5 0.0225 0.0303 0.0118 0.0322 0.0322 0.0286 0.0320 0.0341 0.0359† 5.18
R@10 0.0362 0.0476 0.0206 0.0498 0.0511 0.0434 0.0511 0.0530 0.0570† 7.48
R@20 0.0566 0.0690 0.0345 0.0734 0.0759 0.0635 0.0751 0.0788 0.0841† 6.64
N@5 0.0150 0.0167 0.0073 0.0198 0.0178 0.0176 0.0177 0.0210 0.0213 1.43
N@10 0.0193 0.0223 0.0101 0.0254 0.0239 0.0223 0.0239 0.0271 0.0281† 3.82
N@20 0.0244 0.0276 0.0136 0.0313 0.0301 0.0274 0.0299 0.0336 0.0349† 3.87

Yelp

R@5 0.0253 0.0425 0.0192 0.0435 0.0471 0.0399 0.0458 0.0473 0.0510† 7.75
R@10 0.0415 0.0597 0.0341 0.0634 0.0681 0.0567 0.0691 0.0729 0.0755 3.66
R@20 0.0671 0.0862 0.0570 0.0929 0.0998 0.0817 0.1030 0.1097 0.1111 1.31
N@5 0.0166 0.0322 0.0120 0.0317 0.0344 0.0287 0.0325 0.0323 0.0350† 1.65
N@10 0.0217 0.0377 0.0167 0.0381 0.0412 0.0341 0.0400 0.0405 0.0429† 4.21
N@20 0.0282 0.0444 0.0225 0.0455 0.0491 0.0404 0.0485 0.0498 0.0518† 3.83

ML-1M

R@5 0.2085 0.2182 0.1846 0.2168 0.2160 0.1843 0.2168 0.2158 0.2252† 3.22
R@10 0.2925 0.3103 0.2722 0.3098 0.3049 0.2709 0.3090 0.3044 0.3187† 2.71
R@20 0.3924 0.4121 0.3823 0.4099 0.4078 0.3829 0.4117 0.4080 0.4179† 1.42
N@5 0.1436 0.1495 0.1222 0.1497 0.1487 0.1237 0.1485 0.1479 0.1546† 3.27
N@10 0.1707 0.1791 0.1505 0.1798 0.1774 0.1517 0.1782 0.1765 0.1848† 2.78
N@20 0.1959 0.2049 0.1783 0.2050 0.2034 0.1799 0.2042 0.2026 0.2098† 2.36

Time-domain SR models: GRU4Rec [11] utilizes a gated recur-
rent unit to model users’ sequential behaviors. SASRec [14] lever-
ages the self-attentionmechanism tomodel item-item dependencies
within sequences. BERT4Rec [32] applies BERT’s bidirectional
encoding structure to SR, improving the contextual understand-
ing of sequences through masked item prediction. DuoRec [24]
enhances sequence representations by incorporating contrastive
self-supervised learning tasks into the transformer architecture.
Frequency-domain SR models: FMLP-Rec [48] is a pioneer
frequency-domain SR model using element-wise complex weight
filters to process frequency components. FEARec [2] integrates
frequency-domain signals directly into attention computation, en-
abling the model to leverage time and frequency information.
BSARec [29] adjusts the influence on the high-frequency domains
and combines it with an inductive bias of the self-attention mech-
anism. SLIME4Rec [1] utilizes a frequency ramp structure with
layer-wise dynamic and static frequency band selection to capture
diverse sequential patterns.
Evaluation protocol. We evaluate the performance of the next-
item prediction task using two standard metrics: Recall@K and
NDCG@K, where K is set to {5, 10, 20}. For brevity, we denote these
metrics as R@K and N@K, respectively. Following prior works [14,
26], we adopt the leave-one-out evaluation strategy. For each user’s

interaction sequence, the last item is held out as the test instance,
the second-to-last item is used for validation, and the remaining
interactions form the training set. We rank the ground-truth item
against all other items (including those that appeared in the training
set) and compute the ranking-based metrics on the test set. The
final results are the average scores across all test users. All the
results are averaged over five runs with different random seeds.
Implementation details. All experiments were conducted us-
ing the Recbole5 [46] and Recbole-DA6 frameworks, open-source
libraries for building and evaluating SR models. MUFFIN was im-
plemented on Recbole-DA to ensure a fair comparison, as it is the
same experimental environment used in SLIME4Rec [1]. For all
models, we adopt the Adam optimizer [16] with a learning rate
of 0.001, a batch size of 256, and a hidden dimension of 64. To
ensure consistency and comparability with prior works [1, 2, 14,
29, 48], all frequency-based models are set to use two layers. To
train MUFFIN, we conduct a grid search for hyperparameters: the
number of frequency bands 𝐾 ∈ {2, 4, 6, 8, 10}, the auxiliary loss
weight 𝛼 ∈ {0.05, 0.1, 0.2, 0.5, 1}, and load balancing loss weight
𝛽 ∈ {0.05, 0.1, 0.2, 0.5, 1}. The dropout rate is set to 0.1 for ML-1M
and 0.4 for the remaining datasets. We searched for the kernel size

5https://github.com/RUCAIBox/RecBole
6https://github.com/RUCAIBox/RecBole-DA

https://github.com/RUCAIBox/RecBole
https://github.com/RUCAIBox/RecBole-DA
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𝑐 for the UAF module over {3, 5, 7}. All baseline models were trained
with the hyperparameters reported in their original papers to en-
sure optimal performance. We adopt the cross-entropy loss function
across all models, as it consistently outperforms BCE and BPR loss
in prior studies. Following standard practice [2, 29], the maximum
sequence length is set to 50. N@20 is used as the validation metric,
and early stopping is applied if performance does not improve for
15 consecutive epochs. All experiments were conducted on a server
equipped with an NVIDIA RTX 3090 24GB GPU and an Intel Xeon
Gold 6226R CPU.

5 Experimental Results
5.1 Overall Performance
Table 2 reports the performance of MUFFIN and other baseline
models across five datasets. All improvement ratios are computed
from exact values without rounding. Our key findings are as follows.
Outstanding performance of MUFFIN. MUFFIN consistently
achieves state-of-the-art performance across all datasets. Compared
to DuoRec [24] as the strongest transformer-based baseline, MUF-
FIN achieves average relative improvements of 9.84% in R@10 and
9.48% in N@10. Against SLIME4Rec [1] as the strongest frequency-
domain competitor, MUFFIN achieves average gains of 4.12% in
R@10 and 5.48% in N@10. These improvements underscore MUF-
FIN’s effectiveness in overcoming the limitations of prior models
via its dual filtering architecture, simultaneously capturing both
global and local behavioral patterns.
Time-domain vs. Frequency-domain models. Traditional time-
domain models like, SASRec [14] and DuoRec [24] achieve compet-
itive results. Their performances are particularly pronounced on
ML-1M with long user sequences. In this situation, their superior
capability to model long-range dependencies proves advantageous.
Recent frequency-domain models show promising advancements
over traditional time-domain models. Among them, SLIME4Rec [1]
stands out, outperforming most time-domain models on four out
of five datasets. This highlights the potential of frequency-aware
modeling in capturing intricate user behavior patterns.

5.2 Ablation Study
To evaluate the effect of each component in MUFFIN, we conduct
extensive ablation studies on the Beauty and ML-1M datasets. Ta-
ble 3 reports the comparative results of the original model and its
ablated variants.
Effect of key model components. Removing any core compo-
nent in MUFFIN resulted in consistent performance degradation,
highlighting the importance of each architectural element. Notably,
substituting user-adaptive filtering (UAF) with fixed non-adaptive
filters (w/o UAF ) leads to performance drops, underscoring the
value of personalized frequency selection. Additionally, eliminating
either the Global Filtering Module (GFM) or the Local Filtering
Module (LFM) (w/o GFM or w/o LFM) significantly reduces per-
formance compared to the complete dual-module configuration.
Based on these results, we confirm that global and local frequency
perspectives are complementary and jointly necessary for modeling
complex user behavior.

Table 3: Ablation study of MUFFIN on Beauty and ML-1M.
‘w/o’ denotes the model variant without the corresponding
component.

Model Beauty ML-1M
R@10 N@10 R@10 N@10

MUFFIN 0.0919 0.0487 0.3187 0.1848

w/o UAF 0.0906 0.0473 0.3151 0.1803
w/o GFM 0.0887 0.0460 0.3086 0.1759
w/o LFM 0.0906 0.0467 0.3079 0.1798

w/o L𝑎𝑢𝑥 0.0862 0.0471 0.3101 0.1813
w/o L𝑏𝑎𝑙 0.0907 0.0475 0.3151 0.1810

Table 4: Accuracy comparison between MUFFIN and
MUFFINMLP on Beauty and ML-1M. MUFFINMLP replaces
the convolution layers with MLP layers in UAF.

Model Beauty ML-1M
R@10 N@10 R@10 N@10

MUFFIN (ours) 0.0919 0.0487 0.3187 0.1848
MUFFINMLP 0.0913 0.0476 0.3115 0.1810

Effect of loss functions. The auxiliary training loss is also critical
to the model’s effectiveness. Removing the auxiliary loss L𝑎𝑢𝑥 ,
which provides independent supervision to GFM and LFM, results
in the most substantial drop in performance. This highlights its
importance in promoting the distinct learning objectives of the
two modules. Similarly, removing the load balancing loss L𝑏𝑎𝑙
degrades performance, indicating its role in ensuring effective and
balanced utilization of frequency bands. Further analysis of the load
balancing mechanism is provided in Section 5.3.
Effect of convolutional filters in UAF. To validate the effec-
tiveness of the convolutional filter design in UAF, we conduct an
additional study by replacing the convolution layers with MLP lay-
ers (denoted asMUFFINMLP ). As reported in Table 4, MUFFIN using
convolutional filters consistently outperforms MUFFINMLP on both
datasets. Unlike MLPs that process each frequency component inde-
pendently, convolutional filters better capture local frequencies and
spatial patterns in the frequency spectrum. This capability makes
MUFFIN more effective for generating user-specific filters.

5.3 In-depth Analysis
Visualization of different frequency filters. To investigate how
user-adaptive frequency filtering in MUFFIN differs from existing
models, we analyze the learned frequency filters of representative
models. Figure 3 shows the user-adaptive filters of GFM and LFM
in MUFFIN compared to the frequency filters of FMLPRec [48] and
SLIME4Rec [1]. We found two interesting findings as follows. (i)
FMLPRec [48] exhibits different tendencies across datasets. It em-
phasizes low-frequency components (indices 0–5) in Beauty while
showing a gradually increasing pattern toward high-frequency
regions in ML-1M. SLIME4Rec [1] completely blocks certain fre-
quency bands (i.e., zero amplitude) in Beauty while maintaining
intermediate values across all frequency bands inML-1M.Moreover,
both FMLPRec [48] and SLIME4Rec [1] employ identical filters for
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(a) Layer 1 filter (Beauty) (b) Layer 2 filter (Beauty)

(c) Layer 1 filter (ML-1M) (d) Layer 2 filter (ML-1M)
Figure 3: Frequency filter amplitude distributions of MUF-
FIN’s modules and baseline models on Beauty and ML-1M.
The x-axis represents frequency indices, and the y-axis rep-
resents filter amplitude values. Shaded areas for MUFFIN’s
modules illustrate the variation in amplitude across different
users for each frequency component.

(a) Beauty (b) ML-1M

Figure 4: Probability distribution of frequency band outputs
in LFM across different load balancing weights 𝛽 on Beauty
and ML-1M.

all users. (ii) In clear contrast, both GFM and LFM inMUFFIN exhibit
variability in filter weights even at the same frequency components,
indicating dynamically generated user-adaptive filters. Specifically,
GFM maintains relatively stable patterns over the full frequency
spectrum while incorporating user-specific variations. Meanwhile,
on Beauty, LFM assigns highly diverse weights ranging from near
zero to one across low and high-frequency bands among users. On
ML-1M, LFM shows user-specific variations predominantly in mid
to high-frequency bands. These findings highlight that MUFFIN
mitigates the static filtering of existing frequency-domain mod-
els by dynamically generating user-adaptive frequency filters that
reflect each user’s unique frequency characteristics.
Local frequency band probability. We analyze the probabil-
ity distributions of frequency bands in LFM under varying load-
balancing weights 𝛽 . Figure 4 depicts the average probability dis-
tribution across LFM frequency bands when trained with different

Table 5: Efficiency comparison (in seconds) on Beauty and
ML-1M. Training time is measured per epoch; evaluation
time is measured for all test users.

Dataset Beauty ML-1M

Model Train Eval Train Eval

DuoRec 23.3 0.18 161.2 0.17
BSARec 13.5 0.49 85.0 0.19

SLIME4Rec 31.7 0.16 253.6 0.13
MUFFIN (ours) 15.4 0.67 131.5 0.21

𝛽 values on Beauty and ML-1M. The x-axis represents frequency
band outputs o𝑡 in Eq. (19) ordered from the lowest frequency band
output to the highest, while the y-axis indicates the correspond-
ing probabilities. We use six and four frequency bands in Beauty
and ML-1M, respectively, based on their optimal configurations
(see Section 5.4). For Beauty, as shown in Figure 4(a), the probabil-
ity distribution is well balanced across bands o2 to o6 at 𝛽 = 0.2
(optimal hyperparameter), demonstrating that MUFFIN effectively
mitigates the limited frequency band coverage issue by leveraging
a diverse range of frequency components. In contrast, without load
balancing loss (𝛽 = 0), LFM heavily concentrates on o1, i.e., specific
low-frequency ranges, thereby leading to the loss of crucial behav-
ioral information. For ML-1M, Figure 4(b) shows similar trends.
Notably, low-frequency bands maintain consistently high probabil-
ities regardless of 𝛽 , reflecting their fundamental role in capturing
stable user preferences. Meanwhile, the balanced utilization of high-
frequency bands at the optimal 𝛽 facilitates personalized modeling
of diverse behavioral variations across both datasets.
Training and evaluation cost.We analyze the computational effi-
ciency of MUFFIN compared to competing models. As shown in Ta-
ble 5, MUFFIN demonstrates superior training efficiency compared
to the strongest baseline SLIME4Rec [1], achieving approximately
2× and 1.6× faster training time on Beauty and ML-1M, respec-
tively. While SLIME4Rec incurs substantial training overhead due
to complicated augmentation and loss computations for contrastive
learning, MUFFIN saves significant training time. For evaluation
time, MUFFIN shows increased costs compared to baselines, with
total evaluation times of 0.67s and 0.21s on Beauty and ML-1M, re-
spectively, compared to the fastest baseline (i.e., SLIME4Rec) times
of 0.16s and 0.13s. When calculated per user, this is approximately
0.03-0.035ms of additional time, which stems from the computa-
tional overhead of the dual filtering architecture. The increase in
evaluation time reflects the trade-off between computational effi-
ciency and the accuracy improvements.

5.4 Hyper-parameter Sensitivity
We evaluate the effect of three key hyperparameters used in MUF-
FIN on model accuracy. For hyperparameter analysis, experiments
are conducted with a single seed.
Number of frequency bands 𝐾 . In Figure 5, we analyzed perfor-
mance while varying the number of frequency bands (𝐾). When
𝐾 = 1, LFM is equivalent to GFM. Performance improved with in-
creasing𝐾 , peaking at𝐾 = 4, 6. Both too few or too many frequency
bands led to suboptimal performance, as insufficient bands limit
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(a) Beauty (b) ML-1M

Figure 5: Accuracy of MUFFIN over varying the number of
frequency bands on Beauty and ML-1M.

(a) Beauty (b) ML-1M

Figure 6: Accuracy of MUFFIN over varying auxiliary loss
weight 𝛼 on Beauty and ML-1M.

(a) Beauty (b) ML-1M

Figure 7: Accuracy of MUFFIN over varying load balancing
loss weight 𝛽 on Beauty and ML-1M.

fine-grained pattern capture while excessive bands may cause the
overfitting problem.
Auxiliary loss weight 𝛼 . The weight 𝛼 helps ensure balanced
training between the two modules. We conducted a sensitivity anal-
ysis by varying 𝛼 over a range of values: [0.05, 0.1, 0.2, 0.5, 1], as
shown in Figure 6(a) and (b) for the Beauty dataset. Excessively
small (𝛼 < 0.05) or large (𝛼 > 0.5) values led to performance degra-
dation. MUFFIN exhibited stable and high performance when 𝛼
was set within the range of 0.05 to 0.1 for most datasets. This sweet
spot allows the auxiliary loss to provide sufficient guidance without
overwhelming the primary objective.
Load balancing loss weight 𝛽. The weight 𝛽 controls the bal-
ance across frequency bands. Figure 7(a) and (b) show its impact
when varied from [0.05, 0.1, 0.2, 0.5, 1]. Too small 𝛽 < 0.05 causes
probability concentration on specific bands, while too large 𝛽 > 1
degrades performance by forcing uniform distribution across fre-
quency bands. Most datasets showed the best performance at 𝛽 =

0.2 ∼ 1. This range ensures that MUFFIN utilizes diverse frequency
components while focusing on the informative bands for each user.

6 Related Work
This section reviews existing SR models into two categories: time-
domain models and frequency-domain models.
Time-domain models. Early SR models relied on heuristic-based
approaches such as K-nearest neighbor (KNN) methods [7, 13],
which were limited in modeling complex, long-range dependen-
cies due to their reliance on simple interaction co-occurrences. The
emergence of deep learning [10] significantly advanced the field, en-
ablingmore sophisticatedmodeling of user behavior through neural
architectures. Various neural encoders have been explored, includ-
ing Convolutional Neural Networks (CNNs) [33], Recurrent Neural
Networks (RNNs) [11, 18], Graph Neural Networks (GNNs) [8, 39],
and Transformers [14, 32, 34]. Among them, SASRec [14] intro-
duced self-attention mechanisms for modeling item-item dependen-
cies, while BERT4Rec [32] leveraged bidirectional Transformers to
enhance contextual understanding. In parallel, contrastive learning
has emerged as a powerful tool for improving sequence representa-
tion learning. For instance, CL4SRec [41] utilized data augmentation
strategies to create robust contrastive pairs, and DuoRec [24] in-
troduced supervised augmentation tasks to enrich training signals.
Despite these advancements, time-domain models often struggle
to capture periodic patterns common in user behavior sequences.
Frequency-domain models. Recent research has turned to the
frequency domain for sequence modeling. FMLP-Rec [48] first
introduced frequency-based filtering using MLPs to uncover pe-
riodic patterns in user-item interactions. Building on this idea,
SLIME4Rec [1] and FEARec [2] proposed advanced architectures
with layered frequency ramp structures and frequency-aware at-
tention mechanisms. Additionally, some studies [42, 45] have incor-
porated Fourier-based data augmentation for contrastive learning,
further enhancing representation robustness. BSARec [29] intro-
duced fine-grained frequency adjustment as an inductive bias in
self-attention layers, aiming to better capture subtle sequential
signals. Most recently, some studies have also explored frequency
filtering to extract users’ distinctive information or filter out noisy
components [15, 43]. While these frequency-domain models lack
user-specific adaptability across users, MUFFIN dynamically iden-
tifies diverse behavioral patterns by using dual complementary
modules with user-adaptive filters.
7 Conclusion
In this paper, we present MUFFIN, a novel SR model to overcome
two major limitations of existing frequency-domain models: lim-
ited frequency band coverage and lack of personalized frequency
filtering. MUFFIN adopts a dual filtering architecture, comprising
GFM and LFM, to effectively exploit the full frequency spectrum.
The UAF also enables user-specific frequency filtering for both fil-
tering modules. Extensive experiments demonstrate that MUFFIN
consistently outperforms state-of-the-art baselines. Our in-depth
analysis confirms that MUFFIN exhibits variability in filters across
users. Future work will explore multi-domain scenarios that ex-
hibit more dynamic user behavior patterns and richer frequency
characteristics.
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